

Welcome to oapkg’s documentation!

Contents:

	Overview

	Installation
	For Users

	For Developers

	Usage

	Contributing

	Credits

	History

Developper’s documentation

	Sources
	oapkg package
	Submodules

	oapkg.config module

	oapkg.handlers module

	oapkg.version module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

Back to OpenAlea home page.

	OpenAlea [http://virtualplants.github.io/]

Overview

Default template for openalea packages.

Maybe a bit more description could be usefull.

Installation

For Users

The easiest method is to directly install the package hosted on PyPI:

$ pip install oapkg

For Developers

We recommend using a dedicated conda environment when installing a new package,
so create it if you haven’t done it already:

$ conda create -n myenv python

Then activate it:

$ activate myenv

Download (or clone) the source and then, at the command line:

(myenv) $ conda env update --file requirements.yml
(myenv) $ conda env update --file dvlpt_requirements.yml
(myenv) $ python setup.py develop

If conda fails to install a package, it usually means that one of the required
package cannot be installed with conda. There is three possibilities:

	the package is developed by the openalea community: follow instruction associated to the package
that can be found on openalea [http://virtualplants.github.io/]

	the package is an external package: try using pip to install it instead of
conda.

	the package is not available on the default channel. You can try using a less
esoteric package next time :)

Run test suite

	Use pytest to run all unit tests associated to the package:

(myenv) $ pytest

By default, coverage is activated and will list the lines of codes which are
currently not covered by your tests.

	Use pytest with the ‘runslow’ option to run all tests including functional tests
that may require more time to run:

(myenv) $ pytest --runslow

Compile documentation on your computer

Continuous integration will take care of compiling your documentation automatically
to ensure the web version of the documentation is always accurate. However if you
want to launch sphinx and compile the documentation on your computer for a quick
review purpose for example use the ‘build_sphinx’ option of ‘setup.py’:

(myenv) $ python setup.py build_sphinx

This will create some files in build/sphinx/html. Open the ‘index.html’ to access
the main page of the documentation in a browser.

Usage

Something to say?

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at issues [https://github.com/itk/itkpkg/issues].

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs.
Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for
features. Anything tagged with “feature” is open to whoever wants to implement it.

Write Documentation

itkpkg could always use more documentation, whether as
part of the official itkpkg docs, in docstrings, or even
on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at issues [https://github.com/itk/itkpkg/issues].

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up itkpkg for local
development.

	Fork the itkpkg repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/itkpkg.git

3. Install your local copy into a virtualenv. Assuming you have virtualenv [https://pypi.python.org/pypi/virtualenv]
installed, this is how you set up your fork for local development:

$ virtualenv dvlpt
$ dvlpt/script/activate
(dvlpt)$ python setup.py develop

	Create a branch for local development (wip stands for work in progress):

(dvlpt)$ git checkout -b wip_name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

 (dvlpt)$ cd itkpkg
 (dvlpt) itkpkg$ flake8
 (dvlpt) itkpkg$ pytest

 (dvlpt) itkpkg$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin wip_name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 36.

Check
Travis [https://travis-ci.org/itk/itkpkg/pull_requests]
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest test/test_XXX

Credits

Development Lead

	revesansparole, <revesansparole@gmail.com>

Contributors

	jchopard <jerome.chopard@itk.fr>

History

src

	oapkg package
	Submodules

	oapkg.config module

	oapkg.handlers module

	oapkg.version module

	Module contents

oapkg package

Submodules

oapkg.config module

	
oapkg.config.check(cfg)

	Check the validity of parameters in working environment.

	Parameters

	cfg (Config) – current package configuration

	Returns

	list of faulty parameters

	Return type

	(list of str)

	
oapkg.config.require(purpose, cfg)

	List of requirements for this option for a given purpose.

	Parameters

	
	purpose (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – either ‘option’, ‘setup’, ‘install’ or ‘dvlpt’

	cfg (Config) – current package configuration

	Returns

	(list of Dependency)

	
oapkg.config.update_parameters(cfg)

	Update config with parameters necessary for this option.

Notes: create a section with option name to store params.

	Parameters

	cfg (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – dict of option parameters as seen in pkg_cfg.json

	Returns

	update in place

	Return type

	None [https://docs.python.org/3.4/library/constants.html#None]

oapkg.handlers module

Used to extend Jinja2 environment with extra arguments

	
oapkg.handlers.environment_extensions(cfg)

	Add more functionality to an environment.

	Parameters

	cfg (Config) – current package configuration

	Returns

	any

	Return type

	dict of str

	
oapkg.handlers.installed_options(cfg)

	

oapkg.version module

	
oapkg.version.MAJOR = 0

	(int) Version major component.

	
oapkg.version.MINOR = 1

	(int) Version minor component.

	
oapkg.version.POST = 0

	(int) Version post or bugfix component.

Module contents

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 oapkg	

 	
 	
 oapkg.config	

 	
 	
 oapkg.handlers	

 	
 	
 oapkg.version	

Index

 C
 | E
 | I
 | M
 | O
 | P
 | R
 | U

C

 	
 	check() (in module oapkg.config)

E

 	
 	environment_extensions() (in module oapkg.handlers)

I

 	
 	installed_options() (in module oapkg.handlers)

M

 	
 	MAJOR (in module oapkg.version)

 	
 	MINOR (in module oapkg.version)

O

 	
 	oapkg (module)

 	oapkg.config (module)

 	
 	oapkg.handlers (module)

 	oapkg.version (module)

P

 	
 	POST (in module oapkg.version)

R

 	
 	require() (in module oapkg.config)

U

 	
 	update_parameters() (in module oapkg.config)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to oapkg’s documentation!

 		
 Overview

 		
 Installation

 		
 For Users

 		
 For Developers

 		
 Run test suite

 		
 Compile documentation on your computer

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 Sources

 		
 oapkg package

 		
 Submodules

 		
 oapkg.config module

 		
 oapkg.handlers module

 		
 oapkg.version module

 		
 Module contents

_static/up-pressed.png

_static/up.png

_static/plus.png

